Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology
نویسندگان
چکیده
Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO2 and oppose surface ocean acidification, but would also impact on marine biology. If dissolved in the surface ocean, olivine sequesters 0.28 g carbon per g of olivine dissolved, similar to land-based enhanced weathering. Silicic acid input, a byproduct of the olivine dissolution, alters marine biology because silicate is in certain areas the limiting nutrient for diatoms. As a consequence, our model predicts a shift in phytoplankton species composition towards diatoms, altering the biological carbon pumps. Enhanced olivine dissolution, both on land and in the ocean, therefore needs to be considered as ocean fertilization. From dissolution kinetics we calculate that only olivine particles with a grain size of the order of 1 μm sink slowly enough to enable a nearly complete dissolution. The energy consumption for grinding to this small size might reduce the carbon sequestration efficiency by ∼30%.
منابع مشابه
Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean
[1] We present ocean chemistry calculations based on ocean general circulation model simulations of atmospheric CO2 emission, stabilization of atmospheric CO2 content, and stabilization of atmospheric CO2 achieved in total or in part by injection of CO2 to the deep ocean interior. Our goal is to provide first-order results from various CO2 pathways, allowing correspondence with studies of marin...
متن کاملDetection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification
[1] Dissolution of fossil fuel CO2 in seawater results in decreasing carbonate ion concentration and lowering of seawater pH with likely negative impacts for many marine organisms. We project detectable changes in carbonate dissolution and evaluate their potential to mitigate atmospheric CO2 and ocean acidification with a global biogeochemistry model HAMOCC forced by different CO2 emission scen...
متن کاملEnhanced Chemicalweathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification
[1] Chemical weathering is an integral part of both the rock and carbon cycles and is being affected by changes in land use, particularly as a result of agricultural practices such as tilling, mineral fertilization, or liming to adjust soil pH. These human activities have already altered the terrestrial chemical cycles and land-ocean flux of major elements, although the extent remains difficult...
متن کاملGeoengineering potential of artificially enhanced silicate weathering of olivine.
Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also o...
متن کاملModel-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization
The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in...
متن کامل